Martin Eichler
Don Zagier

The Theory of
Jacobi Forms

1985 Birkhiiuser
Boston - Basel - Stuttgart



Authors

Martin Eichler Don Zagier

im Lee 27 Department of Mathematics
CH-4144 Arlesheim University of Maryland
(Switzerland) College Park, MD 20742 (USA)

Library of Congress Cataloging in Publication Data

Eichler, M. (Martin}
The theory of Jacobi forms.

(Progress in mathematics ; v. 55)
Bibliography: p.
1. Jacobi forms. 2. Forms, Modular. 1. Zagier,

Don, 1951- . IL Title. TIIL Series: Progress in
mathematics (Boston, Mass.} ; v. 55.
QA243.E36 1985 512.9'44 B4-28250

ISBN 0-8176-3180-1

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Eichler, Martin:
The theory of Jacobi forms / Martin Eichler ; Don Zagier. —
Boston ; Basel ; Stuttgart : Birkhiuser, 1985.

(Progress in mathematics ; Vol. 55)

ISBN 3-7643-3180--1 (Basel ...)

ISBN 0-8176-3180-1 {Boston)

NE: Zagier, Don B.;; GT

All rights reserved.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise,
without prior permission of the copyright owner.

® 1985 Birkhiduser Boston, Inc.
Printed in Germany
ISBN 0-8176-3180-1
ISBN 3-7643-3180-1

987654321



TABLE OF CONTENTS

TALYOdUCLIBM o: s« w & o et 59 % % & % f % & % & om0 Wb % @
HOESEIONME «» o oo ve o % omoom om0 e w o  WE B W W M e &
I. Basic Properties . . . « & & & & v 4« s o 4w 4w 4

1. Jacobi forms and the Jacobi group . . .

2. Eisenstein series and cusp forms . . . .

3. Taylor expansions of Jacobi forms . . .
Application: Jacobi forms of index one ., . . .

4. Hecke operators . . « o . = 2« = = & o+ 4 . s

II. Relations with Other Types of Modular Forms . .

5. Jacobi forms and modular forms of half-
integral weight . . . . . . + + + « + « « . . .

6. Fourier-Jacobi expansions of Siegel modular
forms and the Saito-Kurokawa conjecture

7. Jacobi theta series and a theorem of Waldspurger .

III. The Ring of Jacobi Forms . . . . . . . . . . . . .

§. Basic structure theorems . . . . . . + . . « « «

9. Explicit description of the space of Jacobi forms.

Examples of Jacobi forms of index greater than 1

10. Discussion of the formula for dim Jk m ot
»
11. Zeros of Jacobi forms . . . . . . . ¢« . . . .
PADLES. « & o o 50 & % @ o 08 I R W 4 O 4R W W w0 W e SE R A

Bibliography . ., . . . &« & & v « &« 4 & v s o4 4 4 a4 e s

137
28
37

41

57

57

72

81

89
100
113
121

133

141

146






INTRODUCTION

The functions studied in this monograoh are a cross between
elliptic functions and modular forms in one variable. Specifically,

we define a Jacobi form on SL,(Z) to be a holomorphic function
b: Hx g > ¢ (¥ = upper half-plane)

satisfying the two transformation eauations

.

2mimez
aT +b Z
1 ¢ (cT +d *eT +d )

T+ e T g (3 2) e s,@)

e—zﬁim(ft +2)2z)

{2) $(T, zHAT+) = $(T,2) (uw € z%)
and having a Fourier expansion of the form
% 2ni(nT +
(3) $(t,2) = . Q2. c(m,r) eXMi(nT+r=)
n=0 r€Z
rzglnnm

Here k and m are natural numbers, called the weight and index of ¢,
respectively. Note that the function ¢(r,0) is an ordinary modular
form of weight %k, while for fixed T the fumction =z - ¢(1,2z) 1is a
function of the type normally used to embed the elliptic curve {/ZT + Z
into a projective space.

If m=0, then ¢ is independent of 2z and the definiticn reduces
to the usual notion of modular forms in one variable. We give three
other examples of situations where functions satisfying (1)~(3) arise
classically:

1. Theta series. Let Q: é‘] + Z be a positive definite integer
valued quadratic form and B the associated bilinear form. Then for

any vector x,€ zV the theta series

> Ox('r,z) - Z eZ‘.rri(Q(x)‘r +B(x,x,)z)
(] xEZN

s
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is a Jacobi form (in general on a congruence subgroup of ST,{Z)) of
weight N/2 and index Q(xo); the condition rzglmm in (3) arises from
the fact that the restriction of Q to Ex + Zx, 1s a positive definite
binary quadratic form. Such theta series (for N=1) were first studied
by Jacobi [10], whence our general name for functions satisfying (1)

and (2).

2. Fourier coefficients of Siegel modular forms. Tet F(Z) be a

Siegel modular form of weight k and degree 2. Then we can write Z as
(Z ;,) with zet, 1,7'€ ¥ (and Im(z)” < Im(t)Im(T')), and the
function F is periodic in each variable T, z and T'. Write its

Fourier expansion with respect to T' as

o0
2TimT'
(5) TE@) = X g (T,z) e :
m=0
then for each m the function 1>m is a Jacobi form of weight k and
index m, the condition 4nm grz in (3) now coming from the fact that F

2wi TE(1Z) .

has a Fourier development of the form X c¢(T) e
ranges over positive semi-definite symmetric 2x2 matrices. The expan-—
sion (5) (and generalizations to other groups) was first studied by
Piatetski—Shapiro [26], who referred to it as the Fourter-Jocobi
expansion of F and to the coefficients rbm as Jacobi funections, a word
which we will reserve for (meromorphic) quotients of Jacobi forms of

the same weight and index, in accordance with the usual terminclogy

for modular forms and functions.

3. The Weierstrass g—function, The fumction
(6) A = 7% P ek ity
wEZ+ZT
- w#D

is a meromorphic Jacobi form of weight 2 and index 0; we will see



w

later how to express it as a quotient of holomorphic Jacobi forms (of
index 1 and weights 12 and 10).

Despite the importance of these examples, however, no systematic
theory of Jacobi forms along the lines of Hecke's theory of modular
forms seems to have been attempted previously.® The authors' interest
in constructing such a theory arose from their attempts to understand
and extend Maass' beautiful work on the 'Saito-Kurckawa conjecture”.
This conjecture, formulated independently by Saito and by Rurokawa [15]
on the basis of numerical calculations of eipgenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "1lift-
ing" from ordinary modular forms of weight 2k-2 (and level ome) to
Siegel modular forms of weight k (and also level one); in a more
precise version, i1t said that this lifting should land in a specific
subspace of the space of Siegel modular forms (the so-called Maass
"Spezialschar", defined by certain identities among Fourier coefficients)

and should in fact be an isomorphism from M (SLZ(E)) onte this space,

2k-2
mapping Eisenstein series to Eisenstein series, cusp forms to cusp forms,
and Hecke eigenforms to Hecke eigenforms. Most of this conjecture was

proved by Maass [21,22,23], another part by Andrianov [2], and the

remaining part by ome of the authors [40]. It turns out that the

* Shimura [31,32] has studied the same functioms and also their higher-
dimensional generalizations. By multiplication by appropriate elemen-—
tary factors they become modular functions in T and elliptic (resp.
Abelian) functions in 2z, although non-analytic ones. Shimura used
them for a new foundation of complex multiplication of Abelian funetions
Because of the different aims Shimura's work does not overlap with ours.
We also mention the work of R.Bermdt [3,4], whe studied the quotient
field (field of Jacobi functions) from both an algebraic-geometrical
and arithmetical point of view. Here, too, the overlap is slight
since the field of Jacobi functions for SL,{(Z) is easily determined
(it is generated over C by the modular invariant j(t) and the
Weierstrass p—function p(r,z)); Berndt's papers concern Jacobi func-
tions of higher lewvel. Finally, the very recent paper of Feingold and
Frenkel [Math. Ann. 263, 1983] on Kac-Mcody algebras uses functions
equivalent to ocur Jacobi forms, theough with a very different motivation;
here there is some overlap of their results and our §9 (in particular,
our Theorem 9.3 seems to be equivalent to their Corollary 7.11).
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conjectured correspondence is the composition of three isomorphisms

Maass "Spezialschar" C (Sp (m)
P I M, (Sp (Z))
Jacobi forms of welght % and index 1
7 1
Kohnen's ™ +"-gpace ([11]) C Mk__}i(ru(ft))
J’i
My 5 (8L (Z)) H

the first map associates to each F the function ¢1 defined by (5), the

second 1s given by

T e G2mint E Y eita—=+% o271 (nT +12) ,
nz0 n20 r’<4n

[
A

and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohmen [11]
for the case of forms of level 1.

One of the main purposes of this work will be to explain diagram
(7) in more detail and to discuss the extent to which it generalizes to
Jacobi forms of higher index. This will be carried cut in Chapters I
and II, in which other basic elements of the theory (Eisenstein series,
Hecke operators, ...) are also developed. 1In Chapter III we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more

complicated than the usual situation because, in contrast with the

classical isomorphism M*(SLZ(Z)) = C[Eu‘Es]' the ring J*’* = k@m Jk,m
: ]
(Jk - Jacobi forms of weight k and index m) is not finitely generated
]

Nevertheless, we will be able to obtain considerable information about

the structure of J* x- Im particular, we will find upper and lower

bounds for dim Je o which agree for k sufficiently large (kzm),

will prove that J =@ J is a free module of rank 2m over the
*,MM k k,m

ring M*(SLZ(?Z)), and will describe explicit algorithms for finding
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bases of J'k o 3§ & vector space over C and of J as a module over
7 ; *,Mm

M*(SLZ(ZZ)). The dimension formula obtained has the form
(8) dim g, o= 3 dim M 5. = N
=0
for k even (and sufficiently large), where N(m) is given by
m
Nm) = X [— —I ([x1] = smallest integer >x) .
r=0

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula

: new _ . new +
(9) dim Jk,m = dim HZkﬁZ(Fa(mn s
new E .
where MZk_Z(l"o(m)) is the space of new forms of weight 2k-2 on I‘G(m)

which are invariant under the Atkin-Lehner (or Fricke) involution

£(T) —3m_k+]' T-2k+2 f(-1/mt) and J;‘?: a suitably defined space of
"new" Jacobi forms.

Chapter IV, which will be published as a separate work, goes more
deeply into the Hecke theory of Jacobi forms. 1In particular, it is
shown with the aid of a trace formula that the equality of dimensions
(9) actually comes from an isomorphism of the corresponding spaces as
modules over the ring of Hecke operators.

Another topic which will be treated in a later paper (by B.Gross,
W.Kohnen and the second author) is the relationship of Jacobi forms to
Heegner points. These are specific peints on the modular curve
X (m) = ZH’/I'D(m) U {cusps} (namely, those satisfying a quadratic equa-
tion with leading coefficient divisible by m). It turns out that for

each n and r with r? < 4nm one can define in a natural way a class

P(n,r) € Jac(X,{(m)) (@) as a combination of Heegner points and cusps and



.

that the sum 3" P(n,r) q" ¥ is an element of Jae (X, (m) (@
n,Yt

E)

®
2 2.

One final remark. Since this is the first work on the theory of
Jacobi forms, we have tried to give as elementary and understandable am
exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach {(for instance,
Jacobi forms are defined by transformation equations in Xx &€ rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too
uninformative or to depend toc heavily on special properties of the full
modular group, and that we have included a good many numerical examples.
Presumably the theory will be developed at a later time from a more

sophisticated point of view.

This work originated from a much shorter paper by the first author
submitted for publication early in 1980. In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on TQ(N)
with arbitrary level N. However, the exact level of the forms in the
bottom of diagram {7) was left open. The procedure was about the game
as here in §84-6. The second author persuaded the first to withdraw his
paper and undertake a joint study in a much broader frame. Sections 2
and 8-10 are principally due to the second author, while sections 1, 3-7
and 11 are joint work. l

The authors would like to thank G. van der Geer for his critical

reading of the manuscript.
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Notations

We use W to denote the set of natural numbers, WM, for WU {0}
We use Knuth's notation l_xJ (rather than the usual [x]) for the
greatest—integer function max{nE Zingx} and similarly

[x] = min{neiﬂngx} = —L—x_l. The symbol [ denotes any square number.
By dlin we mean d|n and (d,g—)= 1. In sums of the form E or

E it is understood that the summation 1is over positive di:ilsnors only.

ad=%
The function » d° (d€W) is demoted O, (n).

The symbg‘lne(x) denotes ezmx, while e™(x) and em(x) {m € I}
denote e(mx) and e(x/m), respectively. In e(x) and em(x), x is a
complex variable, but in em(x) it is to be taken in Z/mZ ; thus
em(ab_]) means e (n) with bn = a(mod m), and not e(a/bm).

We use Mt and In for the transpose of a matrix and for the nxn
identity matrix, respectively. The symbol [a,b,c] denotes the quadrati
form ax2+bxy+cy2.

H denotes the upper half-plane {TE fL"|Im('c) >D}. The letters T
and z will always be reserved for variables in ¥ and €, respectively,
with T = u+iv, =z =x+1y, q=e(T), T =e(z). The group SL,(Z} will
often be denoted by I, and the space of modular (resp. cusp) forms of
weight k on Fl by Mk (resp. Sk). The normalized Eisenstein series
e € M (k24 even) are defined in the usual way; in particular one
has M, := f M = C[E,,E;] with E, = 1+240 L0 (a)q" ,

E = 1~-504 T o,(a)q”.
The symbol " :=" means that the expressiocn on the right is the

definition of that on the left.



Chapter I
BASIC PROPERTIES

§1. Jacobi Forme and the Jacobi Group

The definition of Jacobi forms for the full modular group
I‘1 = SLZ(I) was already given in the Intreduction. In order to treat
subgroups I' C ['1 with more than one cusp, we have to rewrite the

definition in terms of an action of the groups SLz(Z) and Z? on

functions ¢: HXC + €. This action, analogous to the action

(0 El D = (eT+a™ £ (ﬁ) (M - (2 HE 1"1)

.
in the usual theory of modular forms, will be important for several,
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

a b - k mf -cz? at+b Z
@ (cblk,m[u d])(T’z) S e (c‘f+d)¢(c1+d *er+d

(¢ de=r)

and

(3) @] [ uD(r,2) := e"OPT+2h2) ¢ (1,2 + AT + W)
(Ow ez,

i .
where em(x) - 82 Cas (see "Notations"), Thus the two basic transfor—

mation laws of Jacobi forms can be written

ol M=¢ MET), ¢l Xx=4 (xez?),

m

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations

=B
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(¢|k;mM) Ik,mM’ = ¢|k’m(m{') " ((blm){) |mx' = ¢|m(x_+x') ,

(4)
(:blk’mn) [mm = @0 [ M MM ET,, Xxez?) .

They show that (2) and (3) jointly define an action of the semi-direct
product I‘f =T K Z® (= set of products (M,X) with MET, X e z?
and group law (M,X)(M',Xx')=(MM',XM' +X'); notice that we are writing
our vectors as row vectors, S50 1"] acts on the right), th_e (full)
Jacobl group. We will discuss this action in more detail at the end

of this sectiom.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and inder m (k,m € W) on
a subgroup I' C [‘1 of finite index is a holomorphic function ¢: ¥ x@ »
satisfying
1 ¢l M=o METD;

i) 9| x = ¢ (X € z2°);

iii) for each M€&T,, cbfk’mM has a Fourier development of the
form Ze(n,r)q"c" (g=e(1), T=e(2)) with c(a,r) =0
unless n > r/4m. (If: ¢ satisfies the stronger condition
e(n,t) # 0 = n>r?/4m, it is called a cusp form.)

The vector space of all such functions ¢ is denoted .]k’m(T') s if

I'=T, we write simply J for Jk,m(r‘l) .

k,m

Remarks., 1. The numbers n,r in iii) are in general in @, not
in Z (but with bounded denominator, depending on I' and M).

2. We could define Jacobi forms with character, Ik’m(F,X), by
inserting a factor X(M) in i) in the usual way.

3. Also, we could replace z® by any lattice invariant under T,
e.g. by imposing congruence conditions module N if I'=T(N). It would

therefore be more proper to refer to functions satisfying f)-iii}



=] G

as Jacobi forms on the Jacobi group T'J = I' X ZE (rather than on T).
However, we will not worry about this since most of the time we will
be concerned orly with the full Jacobi group.

Our first main resulr is
THEOREM 1.1. The space J_ (1) is finite-dimensional.

This will follow from two other results, both of independent

interesgt:

THEOREM 1.2. Let ¢ be a Jacocbi form of index m. Then for
fizxed TEIH, the function ztv—> ¢(1,2), if not identically zerc, has
exactly 2m zeros (counting multiplicity) im any fundamental domain for

the action of the lattice Zr+ I on €.

Procf. It follows easily from the transformation law i) that

1 ¢,(T,2) ot .

575 (% RS dz = Im (¢, = 3z ° F = fundamental domain for &/ZT+Z)
F

2-1'[—1 “EZ* is invariant under z - z+l1 and changes by Zm

when one replaces z by- z+7T), and this is equivalent to the statement

{the expression

of the theorem. Notice that the same proof works for ¢ meromorphie
(with "number of zeros" replaced by "number of zeros minus number of
poles") and any me€ Z. A consequence is that there are no holomorphic
Jacobi forms of negative index, and that a holomorphic Jacebi form of
index 0 1is independent of 2z (and hence simply an ordinary modular form

of weight k in T).

THEOREM 1.3. Zet ¢ be a Jacobi form on I' of weight k and
index m and A,y rattonal rumbers. Then the function
£(ty = em(l\z‘r) & (T, AT+ 1) is a modular form (of weight k and on some

gubgroup of I'' of finite index depending only on T and om A,u).
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For A=u=0 it ig clear that T » $(T1,0) is a modular form of
weight k on I'. We will prove the pemeral case later on in this sectio
when we have .developed the formalism of the action of the Jacobi group
further. Note that the Fourier development of f(T) at infinity is

}: e(rw)e(n,r) e((mk2 +rA+n)T) N

n,r

so that the conditions n2z0, r? < 4nm  in the definition of Jacobi
forms are exactly what is required to ensure the holomorphicicy of f
at © in the usual sense.

To deduce 1.1, we pick any 2Zm pairs of rational numbers

(A;-Hy) € @ with (A;,Hy) # (A,,n.) (mod Z") for i#3j. Then the

173
functions fi('r) = em(J\;T)q)(T, .XiT+ui) lie in Mk(I'i) for some

subgroups I'i of T, and the map ¢ » {fi} is injective by Theorem 1.2

i
Therefore dim Jk (I < I dim Mk(l“ }; this proves Theorem 1.1 and
,m i i
also shows that Jk - is 0 for k<0 unless k=m=0, in which case it
b

reduces to the constants.

To prove Theorem 1.3, we would like to apply (3) to (A,u) € Q2.
However, we find that formula (3) no longer defines a group action if

we allow non-integral A and u, since
o LA uD | [ W' I)(r,z) =

= em(A‘Zr +20z + AT 20z HA T A ) (T, 2+ AT HAz )

e(2mku')(¢|m[}\+)\' uwHu'l) (1,2)

and e(2mA’'p) will mot in general be equal to 1. Similarly, the third
equation of (4) breaks down if X is not in Z® . Hence if we want to
extend our actions to SLZ(@) {or SLE(IR)) and Qz {or ]Rz), we must
modify the definition of the group action.

The verification of the third equation in (4) depends on the two
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elementary identities

z+k1‘t+u1

cT+d c:‘t+d+u = cT+d 2
2 aTt+b z cz? 2 C(Z+A1T+“1)2
A cT+d+2}LcT+d'_"H_cT+d+A“ = A1T+2llz—ﬁc%r+d +J\l

a b
c d

€ SL,(R) and X = (Xp) € R? we should replace

where (}\1 pl) = (A Ll)(

a b
arbitrary M_(c é

). Thus to make this equation hold for

(3) by

(5) (¢ [ uld 1,2y := eT(A T + 2z + AYO(T, z+ AT+ 1)

(W & R

this is compatible with (3) because em(lu) =1 for A,u € Z.

Unfortunately, (5) still does not define a group action; we now find
L e m Tt v
(6) Gl X" = e'Ou' -2'wol (x+x")
=0 w, xX'=@"y) er?) .

To absorb the extra factor, we must introduce a scalar action of the

group R by
(7 (o] (K1} (T,2) 2= e(me)$(T,2) (KER)

and then make a central extension of R’ by this group R; 1i.e.

replace R® by the Heisenberg group
e = {[Aiw,<] ] O,w e R?, keRr} ,
[Ow,edl" 1) ,"] = [OA" uH’), g+’ +20" -A"u] .

{This group is isomorphic to the group of upper triangular unipotent

3 x3 matrices via
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1 A LK+ AR
[CA p),] ——> 0 1 u L&

0 0 1

The subgroup C]R 1= {[(0 0) .k}, ke ]R} is the center of H._, and

R

H]R/C]R = R?. We can now combine (5} and (7) into an action of H‘R

by setting
@IE WLkl (T,2) = e T+2 iz + u+K)d(T, z+AT+w) ,

and this now £8 a group action because the extra factor e (A'u-Aiu')

in {6) is compensated by the twisted group law in H Because this

R
twist involves Ap' -*,\r]_[ = det (;\, 1:‘) and the determinant is preserved

by SL,, the group SL,{(R) acts on H on the right by

R

[X,<]M = [XM,k] (XER?, kER, M€ SL(R) ;

the above calculations then show that all three identities (&) remain

true if we now take M,M' & SL,(R) and X,X'€ Ho and hence that

equations (2), (5) and (7) together define an action of the semidirect
product S‘LZ(IR) 4 HIR'

In the situation of usual modular forms, we write ¥ as G/K,
where G = SL,(R) contains [ as a disérete subgroup with Wol(I'\G)

finite and K=S0(2) 1s a maximal compact subgroup of G. Here we would

like to do the same., However, the group SL,(R) X H
J

contains
R

" = I'x Z° with infinite covolume (because of the extra R in H]R)
and its quotient by the maximal compact subgroup S50(2) is X Cx R
rather than I x €. To correct this, we observe that the subgroup ZCR

acts trivially in (7), se that (2), (5) and {7) actually define an

action of the quotient group

J
G i= SL(R) ®& H]R/CZ "
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Here it does not matter on which side H]R we write CE s since C is
central in H; the quotient Hm/Cz is a central extension of R? by
s* = {ze€c| [c] =1} (£ = e(k)) and will also be denoted R'+S'.

Now FJ is a discrete subgroup of G with Vol(I'J\GJ) < e, and if we

choose the maximal compact subgroup

g7 = so@yxstc ¢l-= SL,(R) % (R*+s")

then G‘]/K'] can be identified naturally with 3 x ¢ via

a b T ai+b  Ai+p
[(c d)' a U)’CJK A (ci+d ’ ci+d)

The above discussion now gives

J

THEOREM 1.4. Let G be the set of iriples [M,X,z} (M€ SL, (R),

XeRrR?, €€, |z]=1). Then el is a group via

Dozl %', '] = Do, weex', ge's e (dee ()]

and the formula

o] [(: 3). O wse

(et +d) ¥ (—

e

(T,2)

| (s

clz+ At +u)2

2
= Td +}\T+2?\z+3\u)

at+b Z+AT+U
¢ ct+d 7 cT+d

defines an action of ¢! on i¢ Kx€ > L. The functions ¢ saiisfying

the trangformation laws 1) and ii) of Jacobi forms are precisely those

invariant with respect to this action wader the diserete subgroup

]

rd - r xz? of G, and the space of such ¢ can be identified via

F(g) = (¢]|g){i,0)

J

with the set of functions F: ¢l + ¢ left invariant wnder TV and

trans forming on the right by the representation
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~sin €@ cos @

F(g_[( cos € sin e)’ © 0),?;]) - MR8 po

of the maximal compact subgroup K7 = 50(2)x s of c’.

Thus the two integers k "and m in the definition of Jacobi forms
appear, as they should, as the parameters for the irreducible (and here
one-dimensional) representations of a maximal compact subgroup of GJ.

As an application of all this formalism, we now give the proof

of 1.3. The function f{r) in that theorem is up to a constant

(namely e (\u)) equal to (1) = (@ |X)(1,0), where X=(} p) € @’

and ¢|X is defined by (5) (from now on we often omit the indices k,m

] 2
on the sign | ). For X' = (' u') € 2® we have

Sy (T = @MW = AT (T)

by (B6), so tbx depends up to a scalar factor only on X (mod %Z*) and ¢X

) . b
itself depends only on X (mod NZ?) if X & N 'Z®. For M= (2 d) er

we hawve

crr ™ ¢y (EE2) - wixlwe,0
= @Ml @D (r,0
= (¢| (D) (T,0)

¢XM(T) ,

s0 ¢X behaves like a modular form with respect to the congruence

subgroup

{Mer

2 X
M=% (mod Z2%), m-det(m) & z}
of T (this group can be wWritten explicitly

{(a S)E T'| a=1)A + ey, bA+ (d-1)u, mlcu®+(d-a)Au - bA%) € z}

c
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N
and hence contains ' N F(ﬂ) if Nx € Z° ). Finally, if M 1is any
]

element of I‘l then
(gl (D) = @P[x0 (r,0) = 05T + A1) (B[ (T, 4,7+ uy)
k

where (A, U,) = XM, and since ¢|M has a Fourier development contain-
ing qn‘:r only for 4nm > r?, this contains only nonnegative powers of
e(T) by the same calculation as given for M=1Id after the statement

of 1.3.

We end with one other simple, but basic, property of Jacobi forms

THEOREM 1.5. The Jacobi forms form a bigraded ring.

Proof. That the product of two Jacobi forms ¢1 and ¢z of

weight I, and k, and index m, and m respectively, transforms like

2
a Jacobi form of weight k = k1+ k, and index m =m +m, is clear;
we have to check the condition at infinity. One way to see this is to
use the converse of Theorem 1.3, i.e. to observe that the condition
at infinity for a Jacobi form ¢(t,z) of index m is equivalent to the
condition that f£(1)} = em(lzT)¢()\T+u) be holomorphic at « (in the
usual sense) for all A,u € ©@; this condition is clearly satisfied for
$(T,2) = ¢1(T,z)¢2 (t,z) with £(1) = £,(DDf,{(1). A more direct proof
is to write the (n,r)~Ffourier coefficient of ¢ as

c{n,r) = Z e, {n,,r)e,(n,,t,)

n,+0,=n
T, +T,=T

where the e, are the Fourier coefficients of ¢:1 {(the sum is finite

2
i

2

gince mn, £ n, r; £ Animi) and deduce the inequality r° g 4nm from

i
the identity
2 2

2 2
(ry+1,) ) . T . (mlrz—mzrl)
Bt 4(m, +m, ) ; Ty 4m 27 %m 4mym, {m,+m, ) -

2
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This identicty also shows that (as for modular forms) the product ¢'¢2

is a cusp form whenever ¢, or ¢, is one but that (unlike the situation

for modular forms) rj;ltbz can be a cusp form even if neither ¢:1 nor ¢2 is.
The ring J*,* = & Jk m of Jacobi forms will be the object

,m 2

of study of Chapter I[II.

§2. Eisenstein Series and Cusp Forms

As in the usual theory of modular forms, we will obtain our
first examples of Jacobl forms by constructing Eisenstein series. In

the modular case one sets (for k> 2)

B () = Z U = % ), (™ |

YET\T, c,deZ
(c,d)=1

where [ = {t é ;‘)|n€ Z} 1is the subgroup of I of elements Y with
1|k =1, where 1 denotes the constant function. Similarly, here we

define

) Bea®? = D I,

Tl
y& Iy

where

> {[( )(uu)] fnuezf .

Explicitly, this is

2
-k +b z cz
(2) Ek’m('r,z) = 5 Z Z (cT+d) ()LZ a;rd R ;CT+d)

c.d€Z AEZ
(c,d)=1
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where a,b are chosen so that (2 :) € T, . As in the case of modular

forms, the series converges absolutely for k2 4; it is zero if k is
odd (replace c,d by —c,-d). The invariance of Ek. . under I'j is

>
clear from the definition and the absolute convergence. To check the

cusp condition, and in order to have an explicit example of a form in

, we must calculate the Fourier development of E , which we now

J
k,m ksm

proceed to do.
As with Ek’ we split the sum over c¢,d into two parts, according

as ¢ is O or mot. If c¢=0, then d=12*1; these terms give a contributi

2
(3 T fRlrenz) = L ™
AEZ AEZ
(@ = e2™T, ¢ = &®™%)  This is a linear combination of q"z® with

4om = 2 and corresponds to the constant term of the usual Eisenstein

series. If c#0, we can assume c >0 (since k 1is even); using the

identity
2 2
at+h z cz® c{z-A/ec) ai
= P L . LAY S SR B4
cT+d A cr+d cT+d cT+d c (c£0)

we can write these terms as

o 2 2
-k ( d) m (z~-A/c) ai )
T+ = e |- >—H— + =& 2
Z ':I;Z AEE:R c ( T+dfe c
{d,e)=1

Note that d + d+¢ and A * A+c correspond to z + z+1 and T -+ T+1,

so this part equals

(4) ¥ ok Z Z e (md ™ A%) Fk,m(r+%,z—

=1 d {mod ¢} A(mod c¢)
(d,e)=1

o[>
S

with e as in "Notations" and
c



2] g

- -k m (z+ q)?
P, (T,z) := (T +1 (_ _3+) .
k,m p,qzez T + p) e S ;

the function 'E‘k,m is periodic in T and z, so (4) makes sense. MNow

the usual Poisson summatrion formula gives

Fooo= 2 v g%t
kJm n,re X
with
( -k 2
y{n,r) = j T  e{-nT) J e(-mz* /T - rz) dz dr
Im(r)=C, Im(z)=C,

(C1> 0, C, arbitrary). The inner integral is standard and equals

PR, 2 7
(1/2im)? e(r°Tt/4m). Hence

Y(n,r) = J T_k(r/:zim);5 e(f—zl'—;;f‘u“'“* T) dt
Im(T)=C,
0 if 2 p 4mm
Otkmlgk(énm - rz)k—% Af r?<4nm
with
(1y¥/2 ks

B 2572 1 (k -3)

(if rZZJmm, we can deform the path of integration to +i=, so vy=0;
if r? < 4nm, we deform it to a path from -iw to =-i® c¢ircling 0 once
in a clockwise direction and obtain a standard integral representation
of 1/T(s) ). Substituting the Fourier development of Fk,m into (4}

gives the expression

E e, m () Sl

n,r€Z
4nm > r?

with
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%k 2k_:y2 = -k E ~-1y2
k’m(ﬂ.f) = m—k—_f (4nm— r*) E [ ec(md A -k +nd)
c=1 A,d(mod ¢)
(d,e)=1

(5) e

(for d”', see "Motations™). To calculate this, we first replace X by

dA in the inner double sum (since (d,c) =1, this simply permutes the
summands); then the summand becomes ec(dQ(l)) with Q(A) := ml2+r,\+n.

We now use the well~kpown identity

D@ = D wa,

d(mod ¢) al(c,N)
{d,e)=1

where } is the Mobius function (so-called Ramanujan sum; see Hardy—

Wright or most othet number theory texts); then the inner double sum

in (5) becomes

2 w(a E : 1
ale A(mod c)
Q(A) = 0{mod a)

Now the condition Q{A)=0(mod a) depends only on X (mod a), so the

inner sum is % times Na(Q), where

N,(Q) = #{A(mod a) | Q(X) = 0(mod a)}

Hence the triple sum in (5) simplifies to

1-k R - —137¢ g
P2 LN = gyt 3 a0

alec a=1 a

(the last equality follows by writing c¢=ab and using E].,t(l-))b_S = g(s)_’ ).
To calculate the Dirichlet series, we first calculate N,{(Q) for (a,m)=1;
this will suffice completely if m=1 and (using the obvious multiplica-
tivity of Na) will give the Dirichlet series up to a finite Euler

oroduct involving the prime divisors of m in general. If (a,m)=1,
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then
N (Q = #{A(mod a) | m\* +ri+n = O(mod a)}
= #Himod @) | (2mi+1)* = r’~inm (mod 4a)}
= N (" - 4om)
where

Ny(D) = #{x(mod 2a)[ x*=D(mod 4a)} .

It is a classical fact that

a3
” -s L G(s)
(6) ; N, (D)a e

a=1
if D=1 or if D 1is the discriminant of a real quadratic field,
where LD(s) = L{s, -D-)) is the Dirichlet L-series associated to D.
It was shown in [39, p.130] that the same formula holds for all DEZ

if LD(s) is defined by

0 if D# 0,1 (mod 4),
LD(S) = z(2s-1) if D=0 ,

Dy -
LDG(S)‘d% ned) (?O)d ® 0,_, (£/4) if D=0,1 (mod &), D#0

where in the last line D has been written as D, f° with f€WN and
D, = discriminant of Q¢(/D) (the finite sum in this case can also be

written as a finite Euler product over the prime divisors of f)}.

Inserting (6) into the preceding equations, we find that we have proved

k%2

o 1 (1) = o D] Z(2k-2)"" L (k-1)

if m=1 and D =r?-4n< 0, while for m arbitrary there is a similar

formula (now with D = r? -4nm) but multiplied by an Euler factor
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involving the prime divisors of m. Using the functional equations of

LD(S) and §(s) we can rewrite this formula in the simpler form

o (M) = Ly(-)/5(3-2%)

where now all numerical factors have disappeared. The values LD(Z-k)
(D<0, k even) are well-known to be rational and non-zero; they have
been studied extensively by Cohen [6], who denoted them H(k-1, |D|).

Summarizing, we have proved

THEOREM 2.1. 7The series Ek n (k2 & even) converges and defines
E— s

a non-zero element of J . The Fourier development of E ig
k,m k,m

givern by

B T2 = E &, m(®1) qEr
n,r€ &

4nm z r?

where ey m(n,r) for Aom =1 equales 1 <f © = O(mod 2m) and 0 other-
s

wige, while for 4nm>rt? we have

H(k~-1, 4n-r?)

e, 1{mr) = £(3-2k)

(H(k-1,N) = L_N(Z—k) = Cohen's function) and

2
w ELEELy dime & =TI (elementary p-factor) .

e _(n,r) =
,m'? 32K
k,m [3¢ ) p|m
In particular, e, _(n,r) €@Q.

One can in fact complete the calculation of e o in general with
»

little extra work; the result for m square-free is

-1
g (m)
T i E k-1 4nm — ¢
(7) ek’m(n,r) TS d H(k—I,T)

dl(n,r,m)
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However, we do not bother to give the calculation since this result
will follow from the properties of Hecke-type operators introduced in
§4 (Theorem 4.3).

For m=1 and the first few values of k we find, using the tables

of H(k-1,N) given in [6], the expansions

B = 1+ (52 4560+ 1264560 +C g

4+ (12622 + 5760+ 756 + 5760 L+ 1267 2)g°

1

+ (5673 + 75602 + 15120+ 2072+ 15128 + 7562 2 4568 )’ + ...

E = 1+ (g2 -88C-330-882 +% g

4+ (=33072 - 42247 — 7524 — 42262 - 3302 )2 + ...,

1 2, 2

E = 14+(C? + 56 + 366 + 56C L 4+ T C¥gt ... .

]

Further coefficients of these and other Jacobi forms of index 1 are

given in the tables on pp.l4l-143.

In the formula for the Fourier coefficients of Ek 1 it is
?
striking that e l(n,t) depends only on 4n-r1?. Ve now show that this
»

is true for any Jacobi form of index 1; more generally, we have

THECREM 2.2. Let & be a Jacobi form of index m with Fourier

development Ec(n,r)q?z’. Then c(n,r) depends only on bnm—1? and on
r{mod 2m). If k is even and m=l or m <ig prime, then c(n,r) depends

only on 4am-12, If m=1 and k is odd, then ¢ is identically zero.

Proof. This is essentially a restatement of the second transfor-

mation law of Jacobi forms: we have
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Ze(n,mgtt = ¢(r,2) = "(IT+2A2)¢(r,z+AT+1u)
N2 g c(n,r)q"(za™)*
= T cn,r) qn+r)\+m§\2 c'::-+—2r.u)\
and hence
cln,ry = c(n+rA+m?, r+2m\) .
i.e. c(n,r)=c(n',r") whenever r' = r{mod 2m) and 4n'm-r'? = 4om-7r

as stated in the theorem. If k is even, then we also have
c(n,~r) = c{n,r) {(because applying the first transformation law of
Jacobi forms to -I,€ I‘1 gives $(T,-2) = (-1)k¢(T_.z)), so if m is 1

or a prime, then

12

4n'm-r = 4nm-r® = r' = tr(mod 2m) = c(n,r) = c¢{n',r")

Finally, if m=1 and k is odd then $#=0 because c(n,-r) = -ci{n,r)

but 4nm - (»-r)z = 4om-1r? and -r = r(mod 2m) in this case.

Remark: Theorem 2.2 is the basis of the relationship between

Jacobi forms and modular forms of half-integral weight (cf. §5).

In the definition of Jacobi cusp forms, there were apparently
infinitely many conditions to check, namely c({n,r) =0 for all n,r with
4nm=r1?. Theorem 2.2 tells us in particular that we in fact need only
check this for a set of representatives of r (mod 2Z2m). The number of
residue classes r(mod ?m) with r? = O(mod 4m) +s b, where b® is the

largest square dividing m (namely if m=a2b? with a square-free, then

4m|r? = Zab|r). Thus for ¢ € Jy o ve have
¢ a cusp form = c(as®, 2abs) = 0 for s=0,1,...,b=-1 ;

in particular, the codimension of “Tl'iu:lp in Jk i is at most b. Using
» >
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e(n,-r) = (_l)kc(n,r) we see that in fact it suffices to check the

condition c(as®,2abs)=0 for s=0,l,..-;‘_%_} 1f k is even and

b-1 " y
s=1,2,...,{TJ if k dis odd. Hence we have

Cusp . "
¥ m 1 Jk,m 13 at most
b

| 2]+1 5 % is cven (resp. l_%_] if k is odd), where b is the

THEOREM 2.3. The codimension of J

largest integer such that b%|m.

On the other hand, if k>2 then for each integer s we can

construct an Eisenstein series

2
(8) . qas 2abs[“{
3

yerhrd

(n=ab® as above), where the summation is the same as in the definition
of Ek,mzﬁk,m,w Then repeating the beginning of the proof of

Theorem 2.1 we find that

2
) B - E & e B e Ty o e,
re X
r = 2abs (mod 2m)

where " ... " (the contribution from all terms in the sum with c# 0) has
a Fourier development consisting only of terms q"zF with 4mm-t? >0.

It is then clear that Ek _— depends only on s(mod b), that
¥

?
k
= - i < L
Ek,m,—s (-1) Fk,m,s’ and that the series Ek,m,s with 0 £ s £ 5
{(k ever) or 0<s <~g (k odd) are linearly independent. Comparing this
with 2.3, we see that the bound given there is sharp and that we have

proved:

- _ scusp Eis cusp

THEOREM 2.4. If k> 2, then Jk,m Jk,m ® Jk,m , where Jk,m

is the space of cusp forms in Jk i and Jﬁlli ig the space spanned by
) s
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the functions Ek m.s" The functions Ek n.s with 0 £ s £ g—(k even)

or 0< 5<% {(k odd) form a basisa Jﬁ‘j‘: i

We will not give the entire calculation of the Fourier develcpment
of the functions Ek,m,s here, since it is tedious and we do not need
the result. However, we make some remarks. In §4 we will introduce
certain operators UJ?. and VE which map Jacobi forms to Jacobi forms of
higher index. These will act in a simple way on Fourier developments
and will send Eisenstein series to Eisenstein series. Hence certain
combinations of the Ek,m,s ("old forms") have Fourier coefficients which
can be given in a simple way in terms of the Fourier coefficlents of
Eisenstein series of lower index (compare equation (7), where the

coefficients of E are simple linear combinations of those of Ek 1),
’

k,m
and we need only consider the remaining, "new", forms. A convenient

basis for these is the set of forms

(10) nf‘i i Z X(s) B g Giim £
s(mod £)

of index fz, where X is a primitive Dirichlet character (mod f} with
X{-1) =(—l)k. Then a calculation analogous to the proof of Theorem 2.1

for the case m=1 shows that the coefficient qncr in Eéxi is giwven by
»

au e = et XD Loz (25,50

if (r,f) =1, where LD(s,X) is the convolution of LD(S) and L(s,X)
and e(X) a simple constant {essentially a quotient of Gauss sums
attached to X and X° divided by L(3-2k, X%y in particular, the
coefficients are algebraic (in @(X)) and non-zero. If (r,f) >1, then
eé?;(n,r) is given by a formula like (11) with rhe right-hand side

multiplied by a finite Euler product extending over the commor prime
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factors of r and f£f.

If k=2, then the Eisenstein series fail to converge; however, by
the same type of methods as are used for ordinary modular forms ("Hecke's
convergence trick") one can show that for X non-principal there is an
Eisensteln series EZ,m,X € Jz,m having a Fourier development given by
the same formula as for k> 2. Since X must be even (X(-1) = (—1)k) and
since there exists an even non-principal character (mod b) only if b=35
or bz 7, such series exist only for m *divisible by 25, 49, 64, ... .

There is one more topic from the theory of cusp forms in the
classical case which we want to generalize, namelvy the characterization

of cusp forms in terms of the Petersson scalar product. We write
T = ut+iv (v>0) , z = x+iy

and define a volume element dV on H*© by

(12) av == v_adx dy du dv 3

It is easily checked that this is invariant under the action of GJ on
H=x T defined in 81 and is the unique G"Iw-invarianl: measure up to a
constant. (The form v 2dudv is the usual SLZ(TR)—irwariant volume form
on H; the form v ldx dy dis the translatiop~invariant volume form on C,
normalized so that the fibre C€/ZT+2Z has volume 1.) If ¢ and
trapnsform like Jacobi forms of weight k and index m, then the
expression

2 ST S
VTV yn 2y BT

" i J .
is easily checked to be invariant under I", s0 we can defipe the

Petersson scalar product of ¢ and ¥ by

(13) o) = f vk e MY iy T av .
Maexe
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Then we have

THEOREM 2.5. The gealar product (13) 1s well defined and finite

for ¢,p E Jk o and at least ome of ¢ and Y a cusp form. It is

cusp cusp

positive~definite on Jy .5, and the orthogonel complement of T m With
. Eis
respeat to ( , ) is Jk,m'

This will follow from the results in 85 concerning the connection

between Jacobi forms and modular forms of half-integral weight.

§3. Taylor Expansioms of Jacobi Forms

The restriction of a Jacobi form &(tT,2) to 2=0 gives a modular
form of the same weight. In §1 we proved an analogous statement for the
restriction to =z = AT+p (A,4 rational) and used it to show that
Jk,m(r) is finite-dimensional. Another and even more useful way to get
modular forms is to consider the Taylor development of ¢ around z=0;
by forming certain linear combinations of the coefficients one obtains

th development coefficient')

a series of modular forms qu: (D, for "
with D¢ = ¢(1,0) and D 4 a modular form of weight k+v. The precise

result is

THEOREM 3.1. For vE€ N, k€N define a homogeneous poiynomial

p%—l) of two variables by
. x —k+
(1) =gl p(k D (r,n) = coefficient of t2\) in (1-rt+nt?) k+l

(201 (k-2)! 2v

Then for ¢ € Iy m(F) a Jacobi form with Fourier development

Z c(n,r)q"zt , the funciion
n,r
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(2) D

i }; (% pczt_l)(r,mﬂ‘:(“sr)) q"
n=0 r -

15 a modular form of weight k+2v on T. If w>0, it ie a cusp form.

Explicitly, one has

Do = YI(I ctm,r))q* ,
n I
D, = Y () (kr?-2mm)e(n,r)) q® ,
n r
29 = X(): (1) (k+2) ™ - 12(k+1)r2nm+12n2m2)c(n,r))qn

pic R &

Notice that the summation over r is finite since c(n,r) #C = r? < 4mm.

The polynomial pgt_l) is given explicitly by
v
(k=1) . CH (2wt (k+2v-p-2)  2y-2u q
(3 Ppy (Fam) u}=:0 D" Tav-ant T (kdv-nl T a

and is, up to a change of notation and normalization, the so-called

Cegenbauer or "ultraspherical® polynomial, studied in any text on ortho-

: ’ 4 -1
gonal polynomials; we have chosen the normalization so as to make pgl'; )
a polynomial with integral coefficients in k,r,n in a minimal way

(k-1)
2v

a function of r and n for fixed k&€ W). The characteristic property

(accually, times p would still have integral coefficients as

1
v!
of the polynomial p‘g&_l) is that rhe funerion pg:;l)(ﬁ(x,y) LQ(x)(y) ),
where @ 1is a quadratic form in 2k variables and B the associlated
bilinear form, is a spherical function of x and y with respect to Q
(Theorem 7.2).

There is a similar result involving odd polynomials and giving
modular forms qub,.?)aqa,.. . of weight k+1,k+3,... (simply take v 61§+1~IU

and replace (k+v-2)! by (k+v-%)! in (1) and (3)), but, as we shall see
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this can be reduced to the even case in a trivial way, so we content
ourselves with stating the latter case.

As an example of Theorem 3,1 we apply it to the function Bk,l
studied in the last section; using the formula given there for the

Fourier coefficients of Ek 1 we obtain
b}

COROLLARY (Coken [6, Th.6.2)). Let k be even and H(k-1,N) (NEW,

be Cohen's function

L_y(2-k) if N>0, N=0 or 3(mod 4} ,
H{k-1,N) = 7 (3-2k) if N=0,
0 if N=1 or 2(mod 4)

Then for each VvV € N, the funetion

(V) r
. (ty = 2.

P
v
nZ0 2

(Z (knl)(r,n}H(k-l,4u—r2))qn
rzg 4n

ig a modular form of weight k+2v on the full modular group T,. If v>0

<t 78 a cusp form.

Cohen's proof of this result used modular forms of half-integral

weight; the relation of this to Theorem 3.1 will be discussed in §35.

Vet another proof was givenp in [39], where it was shown that Cl(cv) has

the property that its scalar product with a Hecke eigenform

£ = Ea(n)qn = Sk+2\) is equal, up to a simple numerical factor,

to the wvalue of the Rankin series Ea(n)znbs at s = 2k+2v-2,
(v}
k

This property characterizes the form C and alsc shows (since the

value cf the Rankin series is non-zero) that it generates Sk+2\) (resp.

M, if v=0) as a module over the Hecke algebra; an application of this

k
will be mentioned in §7.
To prove Theorem 3.1, we first develop ¢(r,z) in a Taylor

expansion around z= 0;
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) o(r.z) = 3 X oy’

and then apply the transformation equation

© #(EH ) - oot S(g)ec

to get

N2
aT+b k+v 2Timc 1 f 2Time
©® x\}(m_d) = )TV ) + BB () + o (B ¢,

i.e. X\) transforms under [ like a modular form of weight k+v modulo

corrections coming from previous coefficients. The first three cases

of (6) are

b
Xo(_::;ﬂ) (et + d)k Xo('r)
aT+b
Xy (cT+d )

Xz(—:—g—g—-) = (c:'r+d)k+2‘ )(2('{) +21'rimc(m'+d)k+1 X (T)

(et + )t x (1)

Differentiating the first of these equations gives

+ far+b k+1 k+2 v
XD ((:'H*d) ke(ct+d) XOCT) + (cT4d) Xo (t)
and subtracting a multiple of this from the third equation gives

2mim

By = % mpe KD M)

Proceeding in this way, we find that for each Vv the function

-
- C2mim (ervap=2)t | ()
o Byl = Z: TkFv-2)1 nt Xy-2, (T
oOsusy

transforms like a modular form of weight k+v on I'. The algebralc
manipulations required to obtain the appropriate coefficients in (7)

directly (i.e. like what we just did for vw= 2) are not very difficult
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and can be made quite simple by a judicious use of generating series,
but we will in fact prove the result in a slightly different way in a
moment. If ¢ 1is periodic in z and has a Fourier develupfnent

Z cln,r)q"c¥, then e = GlT I (3 2mriry? c(n,r))q™ and hence

I,T n T
Ky 11 - K_v-2)
® g0 = @’ Z(E( 55 4 J{;W“_Z)z!” (;'}“('3,_‘2'”)! )C(n,r))q“
nE0NE hepgd
850
- ~2v (k+ 2V - 231 (2u)t
() 2,900 (2mwi) hFv-Dt £ (0 .

Thus Theorem 3.1 follows from the following more general result:

THEQOREM 3.2. ILet ¢(T,z) ke a formal power series in z as in (4)
with coefficients Xy which satisfy (8) for all (2 g) ETI' and are
ke Lomorphie everywhere (including the cusps of T). Then the function

£, defined by (7) i a modular form of wetght k+v on T.

Proof. Let Mk.,m(r‘) denote the set of all functions ¢ satisfying
the conditions of the theorem. (Note that Mk,m(F) is isomorphie to
Mk,l(I‘) via zt=/mz.) Since E\) involves only X\)' with Vv'=v(mod 2)
we can split up M.k,m(f‘) into odd and even power series, say,

Mk’m(l") = M;:,m(I') @M;,m(l“) and look at the two parts separately
(this corresponds to adioining ~I, to I' and looking at the action of
~I, on ¢; if I already contains -I,, then M (I} = Ml((j:k(p) ).

If ¢ € M;’m(l"), then ¢ =;:§b1 with ¢, € M;:H’m(r) and the functions
X_u,Ev for ¢ and ¢1 are the same except for the shift v -+ v-1,

k + k+l. Hence it suffices to look at M:,m(l"). We now introduce the
differential operators

3 3°
3T 322
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(the heat operafor) and

o 7 - Zk-1 3
Lk'vL z dz :

The operator L is mnatural in the context of Jacobi forms because it

" 5 ix2
acts op monomials q@¥ by multiplication by (27i) (4mm ~r?) and hence,
in view of Theorem 2.2, preserves the second transformation law of

Jacobi forms; this can alsoc be seen directly by checking that
e 2
(10) Lo X = @) x (X € R)

If 1. satisfied a similar equation with respect to the operation of
SL,(R}, then it would map Jacobi forms to Jacobi forms. Unfortunately,
this is not quite true; when we compute the difference between
L(¢|k,mu) and (L¢)|k+2,mM we find that most of the terms cancel but
there is one term, 4Tim(2k-1) ?:.TIE‘;E (q:fk’mn) (t,z), left over (unless
k=%, In which case 1. really does map Jacobi forms to Jacobi forms of
weight % and the same index m; examples are the Jaccbi theta-series,

which are annihilated by L ). To correct this we replace L by Lk'

which no longer satisfies (10) but does satisfy

(11) Lk(¢[k,mu) - (qu:)[kﬂ’mu M € SL,(R)) ,

as one checks by direct computation. Because of the z in the denomi-
nator, Lk acts only on power series with no linear term; in particular
: 3 + +
it acts on M‘k,m(r) and (because of (11)) maps Mk,m(f') to Mk+2’m(l‘}.
Explicitly, we have

L: 3 X 22 e T (8mimX) - 40D QHOX, )22 .

k - A A A+l

AzC Az0

Iterating this formula v times, we find by induction on Vv that the

composite map
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L
* i g L+2 Les2v—2 3
Mk-m(r‘) 2{k-FZ,rIl(F) BE Hk+2v,m(]")
maps E X}\ZZA to
_ a3V 1 v itk 2U=p=2) ! (u) 2
)§O(u§0 (-4) (8mim) ( Al (}H‘k*'\)—'a)[ )H"\J ]J(T)) .

and composing this with the map

Mo, n ) = B o (D (4(T,2) > $(t,0))

gives EZ\) = Mk+2\)(r)' This proves Theorem 3.2 and hence also Theorem
3.1 except for the assertion about cusp forms. But the latter is

(k“”(o 0)c(0,0),

c¢learly true, because the constant term of (2) is p
which is 0 for v >0, and the expansion of Z)VEP at the other cusps is
given by a similar formula applied to ¢|k,mM’ MET,.

By mapping an even (resp. odd) function ¢ € Hk,m(r) to

(ED,EZ,EE’,...) (resp. tao (EL,ES,...)), we obtain maps

M: m(r) B Tr Mk_'_zU(l") *
2 vz0

I‘1'1: n —= Tr Mk+2\)+1(r)

™ vz0

It is clear that these maps are isomorphisms: one can express XV in

terms of gv by inverting (7) to get

n
. Crm* (ev=21-1)1 ()
(12) X Z o GerompmDU Eyozy ()

Ozussy

and then the transformation equations (6} of the Xv follow from

=0 (v>1) and m=1 we

i £ =
EMLH\)(['). In particular, taking £, £, £

Y

obtain the following result, due (independently of one another) to

Kuznetsov and Cohen:
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THEOREM 3.3 (Kuznetsov [16], Cohen [7]). Let £(1) Pe a modular

form of wetght k on T. Then the function

- o v
am fer,e) o= 3 AZERGEUL (W), 2
Z o .

satisfies the transformation equaticn

k Z{at+h =z _ k ez? \ = a b
(2% f(c'r-v-d ’ cT+d) = e e(c‘t+d) £(t,2) ’((c d)EF)

We mention a corollary which will be used later.

COROLLARY (Cohen [6, Th.?7.1]). Let fl,f2 be modular forms on T

of weight k, and k,, respectively,VE N . Then the functiion

Py DOGRE o

v
o TV gy VRfVy_ o T2
F (E,,£,) = (2mD) uf;joc 1) (u)P(k;u) I CEETED IS

i8 a modular form of weight k +k,+2v on ' and is a cusp form if v> 0.

(We have modified Cohen's definition by a factor (_21ri)_u to make
the Fourier coefficients of F\)(fl’f2) rational in those of £, and fz.)
The corollary follows by computing the ccoefficient of 22\l in
EI(T,2)§2 (t,iz), which by Theorem 3.3 transforms like a modular form
of weight k,+k, under T.

We observe that the known result 3.3 could also have been used
to prove 3,1 and 3.,2. (We prefer.red to give a direct proof in the
context of the theory of Jacobi forms, especially as the use of the
differential operators Lk makes the proof rather natural.) Indeed,
let Mli\:?n be the subspace of Mk,m of functions ¢ which are O(ZU),

i.e. have a development X\)(T)z“‘ + X ('l.')z\'H"l + ... . From (6) it is

v+l

clear that the leading coefficient X\J is then a modular form of weight
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k+v and we get an exact sequence

v)
T Hk,m =¥ Hk+u

(v+1)
N

0 — Mk

in which the first arrow is rhe inclusion and the second is ¢ > Xv.
On the other hand, Mi\::l :Mk-a-v,m by division by =z (this was already
used for v=1 when we reduced the study of M;,m to that of M:,m)’ and
3.3 gives amap M —> Mk+v,n by f£+> f(1,/mz); this shows that
the last map above is surjective and gives an explicit splitting.

To get the sequence of modular forms EO,EL,... associated to ¢65Mk,m
we now proceed by induction: having found gD,El,...,EU_l such that

¢(T,2) - Z gu,(‘t,/{lz)zu' = 0 (mod Z\J)

v'<y

we define EU(T) as the leading coefficient (coefficient of z°) im the
3 . _ = /‘ Y
expression on the left-hand side; them ¢ = Z E,'\)(T, mz)z as a formal
v

power series and this is equivalent to the series of identities (12)
or (7).

We have gone inte the meaning of the development coefficients
Z%¢ fairly deeply because they play an important role in the study of
Jacobi forms and because the relation with the identity (14) of

Ruznetsov and Cohen concerning E (which is not a Jacobi form) seemed

striking. In particular, we should mentiom that (13) can be written

_ {j Jk_ltlmn/i_z) “
f(1,2) = a(®)+ (k-1)! 2 a(n) ———e—mr g
=1 /e 2kt

if f = Za(n)q™ (this is the form in which Kuznetsov gave the identity)

To see where the Bessel functions come from, note that the function

Jk_l(bnz)
h(z) = (k-1)! —————  satisfies the ordinary differential equation
(2rz)%<1
2%k-1

h'" + *;w*'h'-f(4w)zh = 0 and is the only solution holomorphic at the
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origin and with h{0) =1. By separation of variables we see that

oo -

f(t,z) = X a(n)h(n/t?z) e21T.mT is the unique solutiom of the partial
0 =

differential equaticn ka=0 satisfying the boundary conditions

E(T+l,z) = %(T,z) and ?(T,O) = f(T), and this uniqueness together with
the fact that Lk commutes with the operation of SLZ(IR) (eq. (11))
]‘_mmed:gately implies that I3 has the property (l4).

As a first application of the maps f)\) to Jacobi forms, we have

a second proof and sharpening of Theorem 1.1:

2m
THEOREM 3.4.  dim J, (T) s dim M (D) + \?;jlaim ST -

Indeed, E =...= £, =0 implies X, =...= X, =0 or ¢ = i 2y,
s0 Theorem 1.2 implies that the map
2m
D = \)S() Z)\): Jk’m(l") - Mk(l") <] Sk+1(I') @ ... ® Sk+2m(r)

is injective. WNote that half of the spaces Mkﬂj(f‘) are ( if -IZEI" H

in particular, for =T, we have

dimH.k'l'dimS +...+dim S (k even) ,

k+2 k+2m

(15) dim J <

dim §, , +dim S, .+ ... +dim {k odd)

k+2m-1
Here the second estimate can even be strengthened to

(16) dim J oS dim Sk Lk dim S L 0

because an odd Jacobi form must vanish at the three 2-division points

-2]:, s and hence cannot have more than a {2m~3)-fold zero at z=0.

T 1t
2 2

Application: Jaecobi Forms of Index One

Theorem 3.4 is the basis for the analysis of the structure of

J = & J as giver in Chapter III, to which the reader may now
*, k,m k,m

skip if he so desires (the results of 884-7 are not used there). As an



example, we now treat the case m=1, which is particularly easy and will

be used in Chapter 1I. Equations (15) and (16) (or Theorem 2.2) give

J =0 (k odd) , dim J gdimuk+dims

1 k.1 2 (k even).

k+

On the other hand, the Fourier developments of E, as given

and EE’1

after Theorem 2.1, show that the quotient

E6 I(Toz)

-1
= 1- 14
G L - (144C + 456 + 1447 ')q +

depends on z and hence is not a quotient of two modular forms, so the ma

Mot Mg ™ S5 4
(F.e) > £(0E, | (1,2) + &(DE,  (1,2)

is injective. Sipce dim M‘k—ll + dim Mk-ﬁ = dim N.k+d:lm Sk+2 for all k

(this follows from the well-known formula fer dika), we deduce

THEOREM 3.5. The space of Jacobi forms of index 1 on SL,(Z) is a

free module of vank 2 over M., with generators E .
I

£

and E_ - The map
Pyt Byt Gy PNt Sy,

(2,2, as in Theorem 3.1) i an isomorphism.
02*%

In particular, we find that the space J8 i is one~dimensional.
4

with generator B, .= E "E, (]E:ir = 1+ 240q + ... the Eisenstein
s ]

series in M"), while the first cusp forms of index 1 are the forms

1

$10,1 = 14 (EEEb,l - E*Eﬁ’l) :
7
1 2
thz,! = g BB ~ B Es,1)

of weight 10 and 12, respectively (the factor 144 has been inserted to

integral and coprime). We

make the coefficients of and ¢112 .
»

¢’w,1
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have tabulated the first coefficients &1 of E =4,6,8) and c
>

k
k,1 ( k,1
of ti:k 1 (k=10,12) in Table 1; notice that it suffices to give a single
L]

sequence of coefficients c(N) (N20, N= (,3(mod 4)) since by 2.2 any
Jacobi form of index 1 has Fourier coefficients of the form
cln,r) = c(bn-r?) for some {c(N)}. To compute the c(N), we can

use either assertion of Theorem 3.5, e.g. for ¢Ju 10 we can
& L4

l1’12,1

either use {(17) and the known Fourier expansions of Ek and E or

k,m

else (what is quicker) use the expansions

ﬂ°¢1031= 0o . D, , =204 ,
(18)

Z%¢12,1 124, Z£¢12’1 =0

[=~] o
(&4 = g T (1-¢M? = 3 1(n)q™) to obtain the identities

=1 n=1
Z S 1(4n—r2) -0 , rzcw 1(im-ll'z) = t(a) ,
jr|<2/m 0<r<2vn :
Z €y, 1(411—1:2) = 121(n) , Z 1-21:12 l(gm_r?) = nt(n)
Iri<2vn 2 O<r<2vn ’
and then solve these recursively for Sy 1(N)-
The functions
- g -2
0, = (C-2+C g+ (202 -160+36-160 =207 )a° + ...
¢, , = (C+10+5 ')q+ (105% - 88 - 132 - 880 +108 “)q* +.

have several beautiful properties and will play a role in the structure

theory developed in Chapter III. Here we mention only the following:

THEOREM 3.6. The quotient

(T,2)

(t,2z)

. C+10+£1 T

r-2+1

¢12,1

ri'll),l

ig -3/1% timee the Weierstrass p-function p(T,z).
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Indeed, since ¢m vanishes doubly at z=0 and (by Theorem 1.2)

1
nowhere else in C/ZT+Z, and since by (18)

0, = @D A= +0(z%)

(19)

Brsa 12A(t) + o(z?) ,

the quotient in question is a doubly periocdic function of z with a

double pole with principal part ?2—1-2—)-2- z > at z=0 and no other poles
E i
in a period parallelogram, so must equal —lz——z—p(':,z).
(2mi)
Finally, we note that, just as the two Eisenstein series E., ; and
b ]
Es,1 form a free basis of J , over M , the two cusp forms ¢1a,1 and
. cusp i .
¢|12 i form a basis of J* N over H*, i.e. we have an isomorphisnm
L] »

~ cusp
Mg B Mg =55 "

(£,8) — £, (T,2) + 5D, (1,2) .
Thus the Jacobi forms
E‘_I(TJEEE(T)quj L (T,2) (a,b2 0, j€{10,12}, 4a+6b+j=k

form an additive basis of the space of Jacobi cusp forms of weight k
and index 1. Each of them has a Fourier expansion of the form
T c(4n-r?)g™T; the coefficients c(N) for Ng 20 and all weights k< 50

are given in Table 2.



CHAPTER X1
RELATIONS WITH OTHER TYPES OF MODULAR FORMS

§5. Jacobi Forms and Modular Forms of Half-Tmtegral Weight

In §2 we showed that the coefficients c(n,r) of a Jacobi form of
index m depend only on the "discriminant" r”- 4nm and on the value of

r(mod 2m), i.e.
(1) eln,r) = cp(éom—r®) , e (M) = ¢, (N) for r'=r (mod 2m) .

From this it follows very easily, as we will now see, that the space of
Jacobi forms of weight k and index m is isomorphic to a certain space
of (vector-valued) modular forms of weight k-% in one variable; the
rest of th.:r'_s section will then be devoted to identifying this space with
more familiar spaces of modular forms of half-integral weipght and
studying the correspondence more closely.

Equation (1) gives us coefficients CU(N) for all y € Z/2mZ and
all integers N2 0 satisfying N = -u®>(mod 4m) (notice that p? is
well-defined modulo 4m if 3 is given modulo 2m), namely

@ e, = (M) (any r€Z, r = ulnod 2m))

(since 3 is a residue class, one should more properly write T€ y
rather than r = p{mod 2m); we permit ourselves the slight abuse of
notation). We extend the definition to all N by settiag cu(N) =0 if

N 2 -p?(mod 4m), and set

(3> h {T) = e, (N} qNﬂ'm (y € Z/2mZ)
H N=o "

-57-



-58—-

and

_ r?/im _r
@) 8, ,(T.2) r;z SR
r = U {mod 2m)

(The Bm i are independent of the function $.) Then

$(T,2)

ST D qume
y{mod 2m) r€Z n2r’fim
r =1 (2m)

N+r®

E Z > e a ™ f

U(mod 2m) r=u(2m) Nz0

(5)

hu (1) Bm,u (T,2z)
U (mod 2m)

Thus knowing the (2m)-tuple (hu) of functions of one variable

1 {(mod 2m)
is equivalent teo knowing ¢. Reversing the above calculation, we see
that given any functrions hU as in (3) with eu(N) =0 for N # —ua(mod 4m
equation (5) defines a function ¢ (with Fourier coefficients as in (1))
which transforms like a Jacobi form with respect to z >z +AT+U
(A,u € E) and satisfies the right conditicons at infinity. In order for
§ to be a Jacobi form, we still need a transformation law with respect
to SLz(Z). Since the theta-series (4) have weight ! and index m,
while ¢ has weight k and index m, we see from (5) thar the hli must
be modular forms of weight k-%. To specify their precise transforma-
; : 4 g L = 0 -1
tion law, it suffices to consider the generators and 1 0

0 1

of F]. For the First we have

(6) B,y (12 = e (1% 8, (1,2)

and

_ i 2
(7 hu('ﬁl) = em( Ty hu(‘l') ,
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as one sees either from the invariance of the sum (5) under T r—~sT+1
or from the congruence N = —uz(mod 4m) din (3). TFor the second we have

as an ecasy consequence of the Poisson summation formula the identity

l 1 =z 2mimz2/ T
8 L ozy _ _
(8) em,u( = ,1_) VT/2mi e z e, uv)am,\)('[,z) R
V{mod 2m)
so (5) and the transformation law of ¢ under (r,z) b (_ %-,%) give
k
1 T ¥

(9) T Ry Qe z . V) KD

u T \/zm'l'/i Zm AV

v(mod 2m)

We have proved

THEOREM 5.1. Equation (5) gives an isomorphism between I o @d
the space of vector valued modular forms (thu(mod 2m) O STL,(Z)

satisfying the transformatiom laws (7) and (9) and bounded as Tm(r) + o.

When we spak of "wector-valued" forms in Theorem 5.1, we mean that

e
the vector h{t)=+(h ) satisfies

U u{mod 2m)

(10) o) = (eted)*TE U@ R(n) = (2 B)er)

where U(M)=(qu(M)) is a certain 2m x 2m macrix (the map TU: 1"1 +GL2m(@I}
is not quite a homomorphism because of the ambiguities arising from the
choice of square-root in (10); to get a homomorphism one must replace Tl
by a double cover). The result 5.1 would be more pleasing if we could

identify J with a space of ordinary (i.e. scalar) medular forms of

k,m
weight k-% on some congruence subgroup of Fl. We will do this below
in the cases m=1 and m prime, k even, and also discuss the general

case a little. First, however, we look ar some immediate consequences

of Theorem 5.1.
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First of all, by combining (5) with the equations Bm _u('r,z) =
B

(—1)k¢(1',2) we deduce the symmetry property

Bm,u (t,-z) and ¢(1,~2)

-1%n

(11) h_, .

(M € z/2mZ)

{this can also be proved by applying (9) twice)}, so that in fact (h”)

reduces to an (m+l)-tuple of forms (hUJrh—}J)Oéugm if k is even and
-1}~ 1 h, - i is - .

to an {(m-l)-tuple ( " h—li)0<11<rn if k is odd However, we can introdu

a finer splitting if m is composite. For each divisor m' of m with

(m'.,m/m') =1 (there are 2% such divisors, where t is the number of

distinct prime factors of m) choose an integer E£=E ., satisfying
(12) E = 1 (mod 2m/m"} E = -1 (mod 2m"')

such a & clearly exists and is unique {(mod 2m), and the set of i,’m, for
all m'|m is precisely {Ej (mod 2m) ]Ezfl (mod Am)} : Now map the

collection of (2m)-tuples (hl.l)ll into itself by the permutation

(13) (h )

Y (mod 2m) Lo (hgg)g(mod 2m)

h
M

Because E_:z = 1(mod 4m), it is clear that equations (7) and (%) are

preserved. Hence we deduce

THEOREM 5.2. For each divisor n' of m with (m',m/m') =1 there

ig an operater L from I to itself such that the coefficient of

k,m
"zt in -;bIWm_ is c¢(n',r') where r'= -r(mod 2m'), ' = r(mod 2m/m")
in'm-r'? = 4om-r®. These cperators arve all imwolutions and together

form a group isomorphic to 2122t and generated by the W y;
p4

T Vs 1
m =TT py").
i=1

Next, we relate the expansicen (5) te the Petersson product

introduced in §2.



-fl1-

THEOREM 5.3. Let

o = Lh,® , v o= ] g0
£ Tm,u 5w mu
be two Jacobt forms in R Then
1 ——. k-7
i = h x
($.4) e [ 1j(r) g, (1) v du dv

TANK {(mod 2m)

In other words, the Petersson scalar product of ¢ and Y as
defined in §2 is equal (up to a constant) to the Petersson product in
the usual sense of the vector-valued modular forms (hl-l)'l.l’ (gll)l-l of we
k=%. The assertions of Theorem 2.5 (that (¢,y) is well defined and i
finite if ¢ or Y is cuspidal) now follow from the corresponding

statements for medular forms in one variable.

Proof, We first compute the secalar product of em and am 5
I ] -

it
a fixed fiber {(T€ X fixed):

~4mmy?/v

[ 6

Jejzrer ™

= e(rz-sz)e imzi) e—&ﬂmyzlv dx dy
C/ZT+E Al

(T,2) em’v('r,z) e dx dy

r=u{2m)
s = v{2m)
Using
i e{rz-s8zZ)dx = § ewlmry
_j s
R/Z
we find that this equals
47rm rv
¢ i G
‘511\) J e dy

R/vEZ r=u(mod 2m)

oo

_ [ ~ammy®/v -
= Gou e dy v v/im 611‘«)

-
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(here 6]__ is the Kronecker delta of r,s and 611\) of W and v modulo 2

s

It immediately follows that

_ 1 — _k-% dud
WD) = —— f 2 h, (1) gu(T)V —2—"

¥ im
TAI u(mod 2m) v

as claimed.

Since Wm' simply permutes the hlJ’ it follows from Theorem 5.3
that wuz' is Hermitian. From Theorem 4.5 it is clear that the W
commute with all Ty ({%,m) =1). Hence we deduce

COROLLARY. J_ has a basis of simultaneous eigenforms for
3

all T, ((,m)=1) and W, (@'|m).

wrk

Theorem 5.2 gives a splitting of J_ _ as ®e 7 where
’ B Y

=
+ k,m ’

the sum is over all t-tuples of sigas with product (-l)k; Theorem 5.3
shows that this splitting i1s orthogonal and that each summand has a
basis consisting of Hecke eigenforms.

We now discuss the connection between Jacobi forms and scalar—
valued modular forms of weight k-%. We recall that modular ferms of
half-integral weight are defined like forms of integral weight, except

d

involves the Legendre symbol (%), the easiest way to specify the

that the automorphy factor describing the action of a matrix (i b)

automorphy factor exactly is to say that for a modular form h(t} on

. k=1 n? ..
1"0(4111) the quotient h/@ , where 8{t) = Zq" , is invariant under
I‘n(lum). We denote the space of such forms by Mk_!i(l"o(zm)). Shimura
developed an extensive theory of such forms im [29],{30]. In particular
he showed that one can define Hecke operators T, on M.k_%(l"n (4m)) for
all primes p{ 4m, that Mk.—%(ro (4m)} is spanned by simultaneous eigen~

forms of these operators, and that the set of eigenvalues of an eigenfor

is the same as the set of eigenvalues of a certain Hecke eigenform of
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weight 2k-2. (Shimura used the notation T(pz) for the Hecke operators
in half-integral weight because they are defined using matrices of
determinant pz, bur we prefer to write ‘[‘p since these are the only
naturally definable operators and correspond to the operators Tp in
weight 2k-2,) His conjecture that the eigenforms of integral weight
obtained in this way have level 2m was proved by Niwa [24]. For the
case m=1 (and later for the case of odd, square-free m {12]), Kohnen
[11] showed how‘one could get all the way down to level m by passing
to the subspace

®

11“11:_;2(r5+m) = {h € Mk—%(rn (4m))|h = 2 c(N) qN}

N=0
(-1)*1N=0,1(mod &)

of forms in Mk_!i(ro {4m)) whose Nt* Fourier coefficient vanishes for
all N with (—l)k_]‘N congruent to 2 or 3 (mod 4). Following Kohnen's
notation in [12], we shall wrire simply Mk-’fi(mJ for M.;_!i(i;m) and

Mk-lg instead of Mk_%(l). Then Kohnen's main result for m=1 says that
cne can define commuting and hermitian Hecke operators Tp on Mng for
all p (agreeing with Shimura's operators if p# 2) and that 'b'lk_‘,,§ then

becomes isomorphic to M as a module over the ring of Hecke operators

2k~2
i.e. there is a 1-1 correspondence between eigenforms h € Mk—% and
h e MZk—E such that the eigenvalues of h and h under Tp agree for

all p. Explicitly, ’?p: Mk‘lﬁ - M'k—!a (k even) is given by

(14)
- = 2k=3 , A
T, E caN > E (cwo® + (" 2ean+ ™ e ()"
N:z0 Nz0
N=0 or 3 (mod 4) N=0 or 3 (mod &)
Observe also that M*_LE 1= % Mk*li is a module over M, by
h(r) > £(4T)R(T) (heM ., FE€M).

We can now state:



CHAPTER IIL
THE RING OF JACOBI FORMS

§8. Basic Structure Theorems

The object of this and the following section is to obtain as much
information as i:ossible about the algebraic structure of the set of
Jacobil forms, in particular about

i) the dimension of Jk,m (k,m fixed), i.e. the structure

of this space as a vector space over C;

.
ii) the additive structure of J

. % Jk,m (m fixed) as a

module over the graded ring Moo= 2] M, of ordinary
k
madular forms;
iii) the multiplicative structure of the bigraded ring

J = @& J of all Jacobi forms.
*,% k,m k,m

We will study only the case of forms on the full Jacobi group Tf
(and usually only the case of forms of even weight), but many of the
considerations could be extended to arbitrary T.

The simplest properties of the space of Jacobi forms were already

given in Chapter I. There we showed that J is finite-dimensional

k,m

for all k and m and zero if k or m is negative (Theorem 1.1 and its

proof) and obtained the explicit dimension estimate

m
dim Mk + E dim Skf-Z\) (k even) ¥
v=1
(1) dim Jk,m = a=1
2 dim S, o (k odd)
v=1 i
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(Theorem 3.4 and the following remarks). We also proved that I, =
3

reduces to H* if m=0 and is free over M, on two generators Ele 1
»

Ea . for m=1. The very precise result for J* , was obtained by
L] »

comparing the upper bound (1) with the lower bound coming from the

linear independence of the two special modular forms EL+ N and Es -
3 >

Similarly, we will get information for higher m by combining (1) with

the following result.

and E_ are algebraically

THEOREM 8.1. The forms E,

Fs

independent over M-

Preoof. Clearly the theorem is equivalent to the algebraic indepen-—

dence over M* of the two cusp forms ¢ and ¢ defined in §3, (17)

10,1 12,1

Suppose that these forms are dependent. Since both have index 1 and any

relation can be assumed to be homogeneous, the relation between them has

the form
m j o
v jzz:o gj('r) ¢10,I(T’z) ¢lz,1(1’z) J =0

for some m, where the gj are modular forms, not all zerc. Let jD be
the smallest j for which gj is not identically zero. Substituting
into. (2) the Taylor expansions given in §3, (19), we find that the

left-hand side of (2) equals

23 2j.+2
o pofe 0 )

(constant)A(T)™ g; (1) =z
0
and hence cannot vanish fidentically. This proves the theorem.

will play a basic role in

Since the twc functions EL' i
»

1 and Es

our analysis of J* £ W€ introduce the abbreviations A,B to denote them

Thus A € J‘_‘ ., BE .:l6 3 and the theorem just proved says that the map
»

e

M*[x,‘f] > J, , sending X to A and Y to B is injective. The (k,m)-
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graded component of this statement is that the map

Bt ™ M ™ 908 Mgy ™% Heyy

m m-1 m
(fn,fl,...,fm) — f A +fA B+ ...+ £ B

is injective. This implies

v

m
COROLLARY 1. dim Jy . 2 j% dn Moy -

We now show how this estimate can be combined with (1) to obtain
algebraic information about the ring of Jacobi forms.

COROLLARY 2. Fix an integer m2> 0. Then the space Joeom F
3

dacobi forms of index m and even weight ts a module of rank m+l over M_.

Proof. The linear independence of the moncmials AJBm_j (0gjgm
over M, implies that the rank is at least m+l. Using the two facts
dim M‘k + ® apnd dim Mk+0(1) = dim M‘k+0(l) (we do not need the more

precise formula dim M 1—1{2 +0(1)), we can write Corollary 1 in the

It

weakened form

dim Jk,m 2z (m+1l)dim Mk + 0{1) (k+=, k even)

1f there were m+2 Jaccbi forms of index m linearly independent over M,
then the same argument used to prove Corollary 1 would show that the
factor m+1l in this inequality could be replaced by m+2, contradicting

the upper bound

dim Jk,m £ (m+l)dim M’k + 0(1)

coming from (1). Hence the rank is exactly m+l.
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COROLLARY 3. Every Jacobi form can be expressed uniquely as a
polynomial in A ond B with coefficients which are meromorphic modular

forms (quotients of holomorphic modular forms).

Am—l

Proof. If ¢ € J then the forms &, A", B, ... ,B® must

*,m 7
be linearly dependent over M, by Corollary 2, and this linear relatiomn

must involve ¢ by the theorem, i.e. we have the formula

m ] =
(3) £(D6(T,2) = 3 £.(0E (1,20 E _(1,2)

: j 5,1 6,1

j=0
with f,fj € M, and f#0; dividing by f gives the assertion of the
corollary (the uniqueness follows at once from the algebraic independenc

of A and B).

Looking more carefully at the proof just given, we can obtain an
estimate of the minimal weight of the form f in (3). Indeed, the
proof of Corollary 2 depended on the fact that the upper and lower
bounds we had obtained for dimjk,m (m fixed) differ by a bounded

amount, i.e.

(15}
o]

(d:i_m M+ V};l dim 5k+2\)) = (éo dinm "k—am-z\))

for some constant C depending only on m; using the explicit formulas

for dim Mk we see that this holds with C = Ei%fil

for all even k. Hence the codimension of M*fA,B] n Jk n Ay
*

and with equality

is
k,m

bounded by C for all k. Now if ¢ € Jk ® and there is no relation
»

of the form (3} with f of weight h, then the subspaces ¢ My and
M*iA,B] N Jk+h,m of Jk+h,m are disjoint and hence the dimension of Mh
is £C. Therefore there is a relation of type (3) at latest in weight

h = 12C = ém(m=1). (Later we shall obtain a much better bound.)

Corollary 3 says that J*,* @ K*, where K, = C(E,,E;} is the



—93-

quotient field of M,, is.a free polynomial algebra K*[A,B] over K.

In particular, the quotient field of J*,* is E(E“ES,A,B). In view
of Theorem 3.6, this is equivalent to the statement that the field of
Jacobi functions (= meromorphic Jacobi forms of weight 0 and index 0)
for SL,(Z) is C(j (t),p(t,2)), a fact which is more or less obvious
from the definition of Jacobi functions and the fact that every even
elliptic function on C/EZT+Z 1is a rational function of £(T,2).

Before proceeding with the theory we would like to discuss the
case of forms of index 2 1in some detail; this will both motivate and
illustrate our results. Here, of course, we do not need Theorem 8.1,
since we can check the linear independence of Az, AB and B® (or of the
monomials Am,-..,Bm for any fixed m) directly by looking at the first
few terms of their Fourier expansions, as was done in the case m=l1 in §3

Thus we obtain the lower hound of Corollary 1 "by hand". This bound and

the upper bound are given for small k by the table

k 2 4 6 8 10 12

dim Mo+ dim Sk+2 + dim Sk+4 Q 1 1 2 2 3

dinM o +dim¥_j +dim¥ _, 0O 0 0 1 1 2

Thus the upper and lower bounds no longer agree, as they did for m=1,

but now they always differ by 1. We will see that the upper bound is

in fact always the correct one. In 52 we showed that Jk m#ﬂ for all
>

even k>4 and all m>1. Hence there exist non-zero forms X € Ju 5oy
= - = ]

Y € Js 5t By Corollary 2, there must be two linear relatioms over M,
2

among the five Jacobi forms X, Y, A", AB and B> of index 2. To find
them, we could calculate the leading Fourier coefficients of X and Y

(we didn't give complete formulas for the coefficients of Eisenstein

series of index >1 in §2, but from §4 we know that E, and Es are
3 E]

2 2
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